Home |
Search |
Today's Posts |
#8
![]() |
|||
|
|||
![]()
On Wed, 26 May 2004 03:42:24 GMT, Bruce in Alaska
wrote: In article , "Steve (another one)" wrote: Dear Folks, What is the recommended wire to connect my insulated backstay to my AT-120 tuner ? I see references to GTO15 for this purpose in American publications, but no-one here in the UK seems to know what GTO15 is. Could someone please suggest an equivalent, or at least a description ! Also if the ground connection has to be broad copper strip because RF won't run down a wire like a conventional dc current, how can the antenna be wire ? Doesn't RF have to run along the cable to the base of the antenna and then up the antenna wire itself ? I'm confused ! Thanks for your help. Steve Others have covered the GTO-15 question, very well. There are a number of reasons that copper strap is used for RF Grounding in the Maritime Radio Installations. One being, that it is desireable for the RF Ground to have the lowest possible Impedance at the transmitted frequency. Two being, that it is desirable that the surface area of the RF Ground System be as large as practicable, to maximise coupling to the seawater. Three being, That RF flows on the surface of the conductor, and more surface area means lower impedance on the Ground. The antenna wire isn't supposed to couple into the seawater, but into the ethos, so it should have the least surface area as can practically handle the RF Current of the transmitter and be tuned to resonance by the tuner, and as low of resistance as practicable, so that RF Current can propagate along it's length. Bruce in alaska Gary S. can chime in anytime on this..... Hi Bruce, The diameter of the antenna wire is not too important. Actually the larger it is the less resistive loss it has and less power will be wasted in heat. But unless the antenna is significantly shorter than a quarter wavelength that loss is negligible in the antenna as the radiation resistance (radiation resistance is where the power goes to be radiated) is usually much higher than the resistive loss of the wire. However in a very short antenna the radiation resistance can be only an ohm or a few ohms. Then the resistance of the wire would be a larger percentage and the heat loss would be greater thus warranting a larger diameter wire. Otherwise a larger diameter wire has the advantage of greater bandwidth for given tuner settings. But the difference between #10 and # 16 would probably not be noticeable. As you well know, in the case of the ground system as we have said many times before, it needs to be as short as possible or it becomes part of the antenna and radiates. "The antenna starts at ground". Anything above ground is antenna. Regards Gary |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
SSB Antenna theory | Electronics | |||
Notes on short SSB antennas, for Larry | Cruising | |||
Notes on short SSB antennas, for Larry | Electronics | |||
How to use a simple SWR meter and what it means to your VHF | Electronics |