View Single Post
  #54   Report Post  
Jack Painter
 
Posts: n/a
Default SSB Antenna connection

"Gary Schafer" wrote

Oh boy! I just got back from vacation and am just now reading this
stuff.

Jack, Bruce and the others are entirely right. I once had a hard time
figuring out why RF would not flow on the inside of a tube too. It
would seem logical that it would do as you say but it doesn't.

Look up "wave guide beyond cutoff". That will answer your question
about why rf dose not flow on the inside of a tube.

It will flow on the inside for only a very short distance from the
opening. Then it gets canceled. This is how many signal generator
attenuater work.
They use a tube of 6 or so inches long with a sliding probe inside fed
from one end. On the other open end is a fixed pickup probe. When the
movable probe is close to the fixed probe on the other end, maximum
signal coupling is obtained. As the other probe is moved away inside
the tube the signal becomes highly attenuated.

It is operating as a wave guide that is much too small for the
frequency involved. If the tube diameter was made large enough to be a
quarter wave length in diameter then the rf would propagate through
it. But that would be in a different mode than the skin effect
conduction being discussed.

By the way did you know that skin effect even comes into play in 60 hz
distribution systems?

Regards
Gary


Hi Gary, welcome back, and thanks for your replies.

Right principles, wrong application. Trying to apply high power microwave
principles (3-15 gHz) to low power 2-30 mHz) is not the same. Now at 100 mHz
and below, while there would still a small but measurable difference of skin
effect at high transmit power, it ain't much and has nothing to do with low
power 2-30 mHz where a thin walled copper tube has ZERO measurable
difference in skin effect to a copper strap of even slightly smaller gage.
That has been my never paid attention to point all along, that skin effect
involves the entire cross section of thin material, and copper tubing is
more than thin enough to carry current in it's entire (that means from outer
to inner surface) cross section. That's exactly why copper tube is used so
much in AM broadcast components. This is not even related to waveguides
which must by design AVOID all skin effect which causes great resistance and
heating at the current and velocites involved in microwave transmission.

As we eventually got around to research rather than blindly arguing
positions of opinion, then the participants hopefully learned something.
I've learned that applying the math from formulas for skin effect in
conductors of known ohmic value and used with a known frequency can
determine the wall thickness of a conductor which has full cross sectional
current on it. Guess what? The original poster's question about using copper
tubing remains answered. A 1" copper tube has more surface area and carries
just as much low power RF on it's entire cross section as a 1" wide piece of
copper strap that is nearly the same gage.

Best,

Jack Painter
Virginia Beach Va