Home |
Search |
Today's Posts |
#31
![]()
posted to alt.sailing.asa
|
|||
|
|||
![]() "Charles Momsen" wrote in message ... "Wilbur Hubbard" wrote in message anews.com... "Charles Momsen" wrote in message ... "Joe" wrote in message ... On Dec 11, 12:00 pm, "Wilbur Hubbard" wrote: "Charles Momsen" wrote in message ... This graph: http://www.windows.ucar.edu/tour/lin....html&edu=high Shows the density of water as a function of depth. Water density changes from 1.025 gm/cm^3 to 1.026 gm/cm^3 in 250 feet. That's a change of 0.1% in 250 ft. Since that portion of the curve is linear, one can estimate that water density would change .0004% over the diameter (tip to tip) of a 12 inch propeller. So is a .0004% change in water density (in the vertical plane no less) going to walk a boat sideways? Don't think so. Think, Momsen, think! There are very large forces at work when a propeller is turning at speed. You are stuck on static in your thinking. Picture it this way. Let's say you were riding a bicycle at 1mph and you had a ten mile per hour headwind. You would experience an 11mph head wind. Now, if you aren't a girly-man you should be able to sprint up to 35mph. You would then experience a 45mph headwind. Suddenly your inconsequential wind has great consequence. It's the same way with a propeller and the lift vs.drag coefficient. Even a very small density difference results in a significant drag difference between the top half of the prop and the bottom half of the prop. But there is another thing that has a greater effect than density causing density to be only part of the equation. Water density does not vary greatly due to the fact that it doesn't compress easily. What does change significantly with depth is water pressure (divers say 1 atmosphere for every 15 feet?) The more pressure = the more drag for the propeller. I hope this helps. Wilbur Hubbard Let me use examples you may understand Neal. Ever mix paint in a 5 gallon bucket with a paint mixing propellor on a drill? Why is the propellor in the paint pulled off center? A dairy has huge tanks to store milk. They keep the creme mixed in the milk with propellors on long shafts. They hang straight down , he shaft is vertical. When you turn them on the long shafts bend some in the direction of wheel walk. Are you saying that it is pressure difference when the prop is horizional causing the walk? When a propellor flys off an airplane they never go straight, they spin off in the direction of walk. Think path of least resistance to the face of the fluke Hope this helps. Joe ************************************************** ************************************ ************************************************** ************************************ Joe, Thanks to your input, that of Wilbur and others I believe I have come up with the most plausible explanation for propeller walk. This explanation may even impress Blondie! The cause of the prop walk is due to 2 effects, namely the Magnus Effect and the Coanda Effect. They can be found he http://lpmpjogja.diknas.go.id/kc/a/air/airplane.htm The spinning prop creates a vortex of water that is moving relative to water surrounding it, especially if the prop is angled down relative to the water's surface. Already a false assumption. The vortex, like that from a tip of an airplane wing will angle upwards. Why? because water pressure lessens towards the surface. A right hand prop on a forward moving boat would create a downward angling vortex that had higher relative velocity to the surrounding moving water on the starboard side and lower on the port. Viewing the vortex as a rotating cylinder moving through a fluid, the lift would be generated to port, as is observed. The Coanda Effect would explain the draggging and leakage of water laterally by the prop. I believe these explanations are the simplest and consistent with all observed effects, including paint stirrers in Joe's buckets. I searched and could find no explanation of prop walk using the Magnus or Coanda Effect. Mostly what I found was the same false pablam of water density and other voodoo science mindlessly regurgitated by babbling non-thinking parrots. I resent these remarks. As I have shown density and pressure have everything to do with prop walk. It was only with the great minds combined here on ASA that such previous unexplained hydrodynamic effects have come to full understanding for the greater benefit of mankind. Yes, ASA is slowly rising from the dismal swamp it had once become to shining paragon of truth, justice and the American way! Good work to all, and let's keep our noses to the grindstone! Admiral Momsen It will only rise from the abyss when Pansy Ganzy throws in the towel. Wilbur Hubbard Have you not noticed that when the dialogue is more sailing related, less political, involves rationality, knowledge and gives less opportunity for personal attacks his participation noticeably wanes? It's a sad, but true observation. Hopefully he can find it within himself to deal with others as equals, rather than from a drippy point of condensation. His mention of prop wash was invaluable in the search for the truth about prop walk. Rarely do I bother reading his posts lately. They lack substance more and more as time passes. I think Dave finally managed to show him the error of his ways. What a beating that was! Wilbur Hubbard |
#32
![]()
posted to alt.sailing.asa
|
|||
|
|||
![]() "Marty" wrote in message ... Charles Momsen wrote: "Joe" wrote in message ... On Dec 11, 12:00 pm, "Wilbur Hubbard" wrote: "Charles Momsen" wrote in message ... This graph: http://www.windows.ucar.edu/tour/lin....html&edu=high Shows the density of water as a function of depth. Water density changes from 1.025 gm/cm^3 to 1.026 gm/cm^3 in 250 feet. That's a change of 0.1% in 250 ft. Since that portion of the curve is linear, one can estimate that water density would change .0004% over the diameter (tip to tip) of a 12 inch propeller. So is a .0004% change in water density (in the vertical plane no less) going to walk a boat sideways? Don't think so. Think, Momsen, think! There are very large forces at work when a propeller is turning at speed. You are stuck on static in your thinking. Picture it this way. Let's say you were riding a bicycle at 1mph and you had a ten mile per hour headwind. You would experience an 11mph head wind. Now, if you aren't a girly-man you should be able to sprint up to 35mph. You would then experience a 45mph headwind. Suddenly your inconsequential wind has great consequence. It's the same way with a propeller and the lift vs.drag coefficient. Even a very small density difference results in a significant drag difference between the top half of the prop and the bottom half of the prop. But there is another thing that has a greater effect than density causing density to be only part of the equation. Water density does not vary greatly due to the fact that it doesn't compress easily. What does change significantly with depth is water pressure (divers say 1 atmosphere for every 15 feet?) The more pressure = the more drag for the propeller. I hope this helps. Wilbur Hubbard Let me use examples you may understand Neal. Ever mix paint in a 5 gallon bucket with a paint mixing propellor on a drill? Why is the propellor in the paint pulled off center? A dairy has huge tanks to store milk. They keep the creme mixed in the milk with propellors on long shafts. They hang straight down , he shaft is vertical. When you turn them on the long shafts bend some in the direction of wheel walk. Are you saying that it is pressure difference when the prop is horizional causing the walk? When a propellor flys off an airplane they never go straight, they spin off in the direction of walk. Think path of least resistance to the face of the fluke Hope this helps. Joe ************************************************** ************************************ ************************************************** ************************************ Joe, Thanks to your input, that of Wilbur and others I believe I have come up with the most plausible explanation for propeller walk. This explanation may even impress Blondie! The cause of the prop walk is due to 2 effects, namely the Magnus Effect and the Coanda Effect. They can be found he http://lpmpjogja.diknas.go.id/kc/a/air/airplane.htm The spinning prop creates a vortex of water that is moving relative to water surrounding it, especially if the prop is angled down relative to the water's surface. A right hand prop on a forward moving boat would create a downward angling vortex that had higher relative velocity to the surrounding moving water on the starboard side and lower on the port. Viewing the vortex as a rotating cylinder moving through a fluid, the lift would be generated to port, as is observed. The Coanda Effect would explain the draggging and leakage of water laterally by the prop. I believe these explanations are the simplest and consistent with all observed effects, including paint stirrers in Joe's buckets. I searched and could find no explanation of prop walk using the Magnus or Coanda Effect. Mostly what I found was the same false pablam of water density and other voodoo science mindlessly regurgitated by babbling non-thinking parrots. Read Chapman, he explains it in exactly the same terms, (vortexes) but leaves out calling it either Magnus or Coanda. It's a nice simple explanation with a little drawing explaining why the port side blade on a right hand prop has a lower angle of attack than the right side. If you imagine perhaps the worst case: A prop has a pitch angle of 10 degrees (I know this doesn't happen with a real prop), it's on a shaft inclined by 10 degrees. In this case the port side blade vertical at it ascends or descends and generates no thrust, forward or aft. All the thrust comes from the starboard side blade angled at 20 degrees, you can clearly see there is an unbalance here. Now put it reverse and the prop throws a rising vortex of water at the starboard side of the hull, kicking it to port, while at the same time pulling the prop shaft sternwards from the starboard side only, tending to skew the boat to port. Put both together and you've got port prop walk. Cheers Martin Wrong! Pitch angle doesn't matter. My outboard motor on the back of my bluewater yacht can be put in reverse on a calm day at about 1/8 throttle while I'm tied to my mooring. My yacht will turn slow circles caused by prop walk. The propeller is totally horizontal. Wilbur Hubbard |
#33
![]()
posted to alt.sailing.asa
|
|||
|
|||
![]()
Wilbur Hubbard wrote:
"Marty" wrote in message ... Charles Momsen wrote: "Joe" wrote in message ... On Dec 11, 12:00 pm, "Wilbur Hubbard" wrote: "Charles Momsen" wrote in message ... This graph: http://www.windows.ucar.edu/tour/lin....html&edu=high Shows the density of water as a function of depth. Water density changes from 1.025 gm/cm^3 to 1.026 gm/cm^3 in 250 feet. That's a change of 0.1% in 250 ft. Since that portion of the curve is linear, one can estimate that water density would change .0004% over the diameter (tip to tip) of a 12 inch propeller. So is a .0004% change in water density (in the vertical plane no less) going to walk a boat sideways? Don't think so. Think, Momsen, think! There are very large forces at work when a propeller is turning at speed. You are stuck on static in your thinking. Picture it this way. Let's say you were riding a bicycle at 1mph and you had a ten mile per hour headwind. You would experience an 11mph head wind. Now, if you aren't a girly-man you should be able to sprint up to 35mph. You would then experience a 45mph headwind. Suddenly your inconsequential wind has great consequence. It's the same way with a propeller and the lift vs.drag coefficient. Even a very small density difference results in a significant drag difference between the top half of the prop and the bottom half of the prop. But there is another thing that has a greater effect than density causing density to be only part of the equation. Water density does not vary greatly due to the fact that it doesn't compress easily. What does change significantly with depth is water pressure (divers say 1 atmosphere for every 15 feet?) The more pressure = the more drag for the propeller. I hope this helps. Wilbur Hubbard Let me use examples you may understand Neal. Ever mix paint in a 5 gallon bucket with a paint mixing propellor on a drill? Why is the propellor in the paint pulled off center? A dairy has huge tanks to store milk. They keep the creme mixed in the milk with propellors on long shafts. They hang straight down , he shaft is vertical. When you turn them on the long shafts bend some in the direction of wheel walk. Are you saying that it is pressure difference when the prop is horizional causing the walk? When a propellor flys off an airplane they never go straight, they spin off in the direction of walk. Think path of least resistance to the face of the fluke Hope this helps. Joe ************************************************** ************************************ ************************************************** ************************************ Joe, Thanks to your input, that of Wilbur and others I believe I have come up with the most plausible explanation for propeller walk. This explanation may even impress Blondie! The cause of the prop walk is due to 2 effects, namely the Magnus Effect and the Coanda Effect. They can be found he http://lpmpjogja.diknas.go.id/kc/a/air/airplane.htm The spinning prop creates a vortex of water that is moving relative to water surrounding it, especially if the prop is angled down relative to the water's surface. A right hand prop on a forward moving boat would create a downward angling vortex that had higher relative velocity to the surrounding moving water on the starboard side and lower on the port. Viewing the vortex as a rotating cylinder moving through a fluid, the lift would be generated to port, as is observed. The Coanda Effect would explain the draggging and leakage of water laterally by the prop. I believe these explanations are the simplest and consistent with all observed effects, including paint stirrers in Joe's buckets. I searched and could find no explanation of prop walk using the Magnus or Coanda Effect. Mostly what I found was the same false pablam of water density and other voodoo science mindlessly regurgitated by babbling non-thinking parrots. Read Chapman, he explains it in exactly the same terms, (vortexes) but leaves out calling it either Magnus or Coanda. It's a nice simple explanation with a little drawing explaining why the port side blade on a right hand prop has a lower angle of attack than the right side. If you imagine perhaps the worst case: A prop has a pitch angle of 10 degrees (I know this doesn't happen with a real prop), it's on a shaft inclined by 10 degrees. In this case the port side blade vertical at it ascends or descends and generates no thrust, forward or aft. All the thrust comes from the starboard side blade angled at 20 degrees, you can clearly see there is an unbalance here. Now put it reverse and the prop throws a rising vortex of water at the starboard side of the hull, kicking it to port, while at the same time pulling the prop shaft sternwards from the starboard side only, tending to skew the boat to port. Put both together and you've got port prop walk. Cheers Martin Wrong! Pitch angle doesn't matter. My outboard motor on the back of my bluewater yacht can be put in reverse on a calm day at about 1/8 throttle while I'm tied to my mooring. My yacht will turn slow circles caused by prop walk. The propeller is totally horizontal. Wrong yourself. Pitch angle contributes. In your case, the vortex is propelled upward on the starboard side, impinging the starboard side of your boat, on the port side the vortex tends be more downward. Pitch angle just adds to the effect. Cheers Martin |
#34
![]()
posted to alt.sailing.asa
|
|||
|
|||
![]()
Charles Momsen wrote:
"Marty" wrote in message ... Charles Momsen wrote: "Joe" wrote in message ... On Dec 11, 12:00 pm, "Wilbur Hubbard" wrote: "Charles Momsen" wrote in message ... This graph: http://www.windows.ucar.edu/tour/lin....html&edu=high Shows the density of water as a function of depth. Water density changes from 1.025 gm/cm^3 to 1.026 gm/cm^3 in 250 feet. That's a change of 0.1% in 250 ft. Since that portion of the curve is linear, one can estimate that water density would change .0004% over the diameter (tip to tip) of a 12 inch propeller. So is a .0004% change in water density (in the vertical plane no less) going to walk a boat sideways? Don't think so. Think, Momsen, think! There are very large forces at work when a propeller is turning at speed. You are stuck on static in your thinking. Picture it this way. Let's say you were riding a bicycle at 1mph and you had a ten mile per hour headwind. You would experience an 11mph head wind. Now, if you aren't a girly-man you should be able to sprint up to 35mph. You would then experience a 45mph headwind. Suddenly your inconsequential wind has great consequence. It's the same way with a propeller and the lift vs.drag coefficient. Even a very small density difference results in a significant drag difference between the top half of the prop and the bottom half of the prop. But there is another thing that has a greater effect than density causing density to be only part of the equation. Water density does not vary greatly due to the fact that it doesn't compress easily. What does change significantly with depth is water pressure (divers say 1 atmosphere for every 15 feet?) The more pressure = the more drag for the propeller. I hope this helps. Wilbur Hubbard Let me use examples you may understand Neal. Ever mix paint in a 5 gallon bucket with a paint mixing propellor on a drill? Why is the propellor in the paint pulled off center? A dairy has huge tanks to store milk. They keep the creme mixed in the milk with propellors on long shafts. They hang straight down , he shaft is vertical. When you turn them on the long shafts bend some in the direction of wheel walk. Are you saying that it is pressure difference when the prop is horizional causing the walk? When a propellor flys off an airplane they never go straight, they spin off in the direction of walk. Think path of least resistance to the face of the fluke Hope this helps. Joe ************************************************** ************************************ ************************************************** ************************************ Joe, Thanks to your input, that of Wilbur and others I believe I have come up with the most plausible explanation for propeller walk. This explanation may even impress Blondie! The cause of the prop walk is due to 2 effects, namely the Magnus Effect and the Coanda Effect. They can be found he http://lpmpjogja.diknas.go.id/kc/a/air/airplane.htm The spinning prop creates a vortex of water that is moving relative to water surrounding it, especially if the prop is angled down relative to the water's surface. A right hand prop on a forward moving boat would create a downward angling vortex that had higher relative velocity to the surrounding moving water on the starboard side and lower on the port. Viewing the vortex as a rotating cylinder moving through a fluid, the lift would be generated to port, as is observed. The Coanda Effect would explain the draggging and leakage of water laterally by the prop. I believe these explanations are the simplest and consistent with all observed effects, including paint stirrers in Joe's buckets. I searched and could find no explanation of prop walk using the Magnus or Coanda Effect. Mostly what I found was the same false pablam of water density and other voodoo science mindlessly regurgitated by babbling non-thinking parrots. Read Chapman, he explains it in exactly the same terms, (vortexes) but leaves out calling it either Magnus or Coanda. It's a nice simple explanation with a little drawing explaining why the port side blade on a right hand prop has a lower angle of attack than the right side. If you imagine perhaps the worst case: A prop has a pitch angle of 10 degrees (I know this doesn't happen with a real prop), it's on a shaft inclined by 10 degrees. In this case the port side blade vertical at it ascends or descends and generates no thrust, forward or aft. All the thrust comes from the starboard side blade angled at 20 degrees, you can clearly see there is an unbalance here. Now put it reverse and the prop throws a rising vortex of water at the starboard side of the hull, kicking it to port, while at the same time pulling the prop shaft sternwards from the starboard side only, tending to skew the boat to port. Put both together and you've got port prop walk. Cheers Martin If it's the explanation I'm thinking of it involves the total path length traveled by the blade tip on either ascent or descent (with the boat moving forward). I could see the argument there but could not resolve if a longer path resulted in less thrust force or more and the same with the short path length. This same argument applies to retreating blade stall in helicopters. I'll look through Chapman and see what he says. The angle of attack argument only holds if the velocity of water is significant compared to the tangential velocity of the blade. If the water velocity is zero then the angle of attack is the same regardless of orientation. If the blade is turning 500 rpm and is 12 inch diameter the tip is moving at 314 inches/sec or 214 mph. 214 mph? 500rpm * (pi *12)in/rev = 1.885E4 inches/min 1.885E4 in/min * 60 min/hr = 1.131E6 inches/hour 1.131E4 in/hr / 63360 in/mi = 17.85 mile/hr 18 mph is a tad bit slower than 214..... Back to remedial slide-rule class for you! Cheers Martin |
#35
![]()
posted to alt.sailing.asa
|
|||
|
|||
![]() "Marty" wrote in message ... Wilbur Hubbard wrote: "Marty" wrote in message ... Charles Momsen wrote: "Joe" wrote in message ... On Dec 11, 12:00 pm, "Wilbur Hubbard" wrote: "Charles Momsen" wrote in message ... This graph: http://www.windows.ucar.edu/tour/lin....html&edu=high Shows the density of water as a function of depth. Water density changes from 1.025 gm/cm^3 to 1.026 gm/cm^3 in 250 feet. That's a change of 0.1% in 250 ft. Since that portion of the curve is linear, one can estimate that water density would change .0004% over the diameter (tip to tip) of a 12 inch propeller. So is a .0004% change in water density (in the vertical plane no less) going to walk a boat sideways? Don't think so. Think, Momsen, think! There are very large forces at work when a propeller is turning at speed. You are stuck on static in your thinking. Picture it this way. Let's say you were riding a bicycle at 1mph and you had a ten mile per hour headwind. You would experience an 11mph head wind. Now, if you aren't a girly-man you should be able to sprint up to 35mph. You would then experience a 45mph headwind. Suddenly your inconsequential wind has great consequence. It's the same way with a propeller and the lift vs.drag coefficient. Even a very small density difference results in a significant drag difference between the top half of the prop and the bottom half of the prop. But there is another thing that has a greater effect than density causing density to be only part of the equation. Water density does not vary greatly due to the fact that it doesn't compress easily. What does change significantly with depth is water pressure (divers say 1 atmosphere for every 15 feet?) The more pressure = the more drag for the propeller. I hope this helps. Wilbur Hubbard Let me use examples you may understand Neal. Ever mix paint in a 5 gallon bucket with a paint mixing propellor on a drill? Why is the propellor in the paint pulled off center? A dairy has huge tanks to store milk. They keep the creme mixed in the milk with propellors on long shafts. They hang straight down , he shaft is vertical. When you turn them on the long shafts bend some in the direction of wheel walk. Are you saying that it is pressure difference when the prop is horizional causing the walk? When a propellor flys off an airplane they never go straight, they spin off in the direction of walk. Think path of least resistance to the face of the fluke Hope this helps. Joe ************************************************** ************************************ ************************************************** ************************************ Joe, Thanks to your input, that of Wilbur and others I believe I have come up with the most plausible explanation for propeller walk. This explanation may even impress Blondie! The cause of the prop walk is due to 2 effects, namely the Magnus Effect and the Coanda Effect. They can be found he http://lpmpjogja.diknas.go.id/kc/a/air/airplane.htm The spinning prop creates a vortex of water that is moving relative to water surrounding it, especially if the prop is angled down relative to the water's surface. A right hand prop on a forward moving boat would create a downward angling vortex that had higher relative velocity to the surrounding moving water on the starboard side and lower on the port. Viewing the vortex as a rotating cylinder moving through a fluid, the lift would be generated to port, as is observed. The Coanda Effect would explain the draggging and leakage of water laterally by the prop. I believe these explanations are the simplest and consistent with all observed effects, including paint stirrers in Joe's buckets. I searched and could find no explanation of prop walk using the Magnus or Coanda Effect. Mostly what I found was the same false pablam of water density and other voodoo science mindlessly regurgitated by babbling non-thinking parrots. Read Chapman, he explains it in exactly the same terms, (vortexes) but leaves out calling it either Magnus or Coanda. It's a nice simple explanation with a little drawing explaining why the port side blade on a right hand prop has a lower angle of attack than the right side. If you imagine perhaps the worst case: A prop has a pitch angle of 10 degrees (I know this doesn't happen with a real prop), it's on a shaft inclined by 10 degrees. In this case the port side blade vertical at it ascends or descends and generates no thrust, forward or aft. All the thrust comes from the starboard side blade angled at 20 degrees, you can clearly see there is an unbalance here. Now put it reverse and the prop throws a rising vortex of water at the starboard side of the hull, kicking it to port, while at the same time pulling the prop shaft sternwards from the starboard side only, tending to skew the boat to port. Put both together and you've got port prop walk. Cheers Martin Wrong! Pitch angle doesn't matter. My outboard motor on the back of my bluewater yacht can be put in reverse on a calm day at about 1/8 throttle while I'm tied to my mooring. My yacht will turn slow circles caused by prop walk. The propeller is totally horizontal. Wrong yourself. Pitch angle contributes. In your case, the vortex is propelled upward on the starboard side, impinging the starboard side of your boat, on the port side the vortex tends be more downward. Pitch angle just adds to the effect. Cheers Martin So you're talking about pitch of the prop as inches per revolution and not pitch as angle of the prop shaft? That's going off on a tangent as those talking about pitch angle in this thread are talking about the angle of the prop shaft from the horizontal or at least that's the impression I got. Wilbur Hubbard |
#36
![]()
posted to alt.sailing.asa
|
|||
|
|||
![]()
Wilbur Hubbard wrote:
"Marty" wrote in message ... Wilbur Hubbard wrote: "Marty" wrote in message ... Charles Momsen wrote: "Joe" wrote in message ... On Dec 11, 12:00 pm, "Wilbur Hubbard" wrote: "Charles Momsen" wrote in message ... This graph: http://www.windows.ucar.edu/tour/lin....html&edu=high Shows the density of water as a function of depth. Water density changes from 1.025 gm/cm^3 to 1.026 gm/cm^3 in 250 feet. That's a change of 0.1% in 250 ft. Since that portion of the curve is linear, one can estimate that water density would change .0004% over the diameter (tip to tip) of a 12 inch propeller. So is a .0004% change in water density (in the vertical plane no less) going to walk a boat sideways? Don't think so. Think, Momsen, think! There are very large forces at work when a propeller is turning at speed. You are stuck on static in your thinking. Picture it this way. Let's say you were riding a bicycle at 1mph and you had a ten mile per hour headwind. You would experience an 11mph head wind. Now, if you aren't a girly-man you should be able to sprint up to 35mph. You would then experience a 45mph headwind. Suddenly your inconsequential wind has great consequence. It's the same way with a propeller and the lift vs.drag coefficient. Even a very small density difference results in a significant drag difference between the top half of the prop and the bottom half of the prop. But there is another thing that has a greater effect than density causing density to be only part of the equation. Water density does not vary greatly due to the fact that it doesn't compress easily. What does change significantly with depth is water pressure (divers say 1 atmosphere for every 15 feet?) The more pressure = the more drag for the propeller. I hope this helps. Wilbur Hubbard Let me use examples you may understand Neal. Ever mix paint in a 5 gallon bucket with a paint mixing propellor on a drill? Why is the propellor in the paint pulled off center? A dairy has huge tanks to store milk. They keep the creme mixed in the milk with propellors on long shafts. They hang straight down , he shaft is vertical. When you turn them on the long shafts bend some in the direction of wheel walk. Are you saying that it is pressure difference when the prop is horizional causing the walk? When a propellor flys off an airplane they never go straight, they spin off in the direction of walk. Think path of least resistance to the face of the fluke Hope this helps. Joe ************************************************** ************************************ ************************************************** ************************************ Joe, Thanks to your input, that of Wilbur and others I believe I have come up with the most plausible explanation for propeller walk. This explanation may even impress Blondie! The cause of the prop walk is due to 2 effects, namely the Magnus Effect and the Coanda Effect. They can be found he http://lpmpjogja.diknas.go.id/kc/a/air/airplane.htm The spinning prop creates a vortex of water that is moving relative to water surrounding it, especially if the prop is angled down relative to the water's surface. A right hand prop on a forward moving boat would create a downward angling vortex that had higher relative velocity to the surrounding moving water on the starboard side and lower on the port. Viewing the vortex as a rotating cylinder moving through a fluid, the lift would be generated to port, as is observed. The Coanda Effect would explain the draggging and leakage of water laterally by the prop. I believe these explanations are the simplest and consistent with all observed effects, including paint stirrers in Joe's buckets. I searched and could find no explanation of prop walk using the Magnus or Coanda Effect. Mostly what I found was the same false pablam of water density and other voodoo science mindlessly regurgitated by babbling non-thinking parrots. Read Chapman, he explains it in exactly the same terms, (vortexes) but leaves out calling it either Magnus or Coanda. It's a nice simple explanation with a little drawing explaining why the port side blade on a right hand prop has a lower angle of attack than the right side. If you imagine perhaps the worst case: A prop has a pitch angle of 10 degrees (I know this doesn't happen with a real prop), it's on a shaft inclined by 10 degrees. In this case the port side blade vertical at it ascends or descends and generates no thrust, forward or aft. All the thrust comes from the starboard side blade angled at 20 degrees, you can clearly see there is an unbalance here. Now put it reverse and the prop throws a rising vortex of water at the starboard side of the hull, kicking it to port, while at the same time pulling the prop shaft sternwards from the starboard side only, tending to skew the boat to port. Put both together and you've got port prop walk. Cheers Martin Wrong! Pitch angle doesn't matter. My outboard motor on the back of my bluewater yacht can be put in reverse on a calm day at about 1/8 throttle while I'm tied to my mooring. My yacht will turn slow circles caused by prop walk. The propeller is totally horizontal. Wrong yourself. Pitch angle contributes. In your case, the vortex is propelled upward on the starboard side, impinging the starboard side of your boat, on the port side the vortex tends be more downward. Pitch angle just adds to the effect. Cheers Martin So you're talking about pitch of the prop as inches per revolution and not pitch as angle of the prop shaft? That's going off on a tangent as those talking about pitch angle in this thread are talking about the angle of the prop shaft from the horizontal or at least that's the impression I got. I do hope you're not being deliberately obtuse. I specifically mentioned the pitch of the propeller blades and the angle of the shaft in the same post so as to make it clear. Anyway if you like, change my 'Pitch Angle" and yours, to 'Shaft Angle', and all is well. If the shaft is horizontal, blade pitch still causes the vortex to rise on the starboard side, inclining the shaft just adds to the effect Cheers Martin |
#37
![]()
posted to alt.sailing.asa
|
|||
|
|||
![]() "Wilbur Hubbard" wrote in message anews.com... So you're talking about pitch of the prop as inches per revolution and not pitch as angle of the prop shaft? That's going off on a tangent as those talking about pitch angle in this thread are talking about the angle of the prop shaft from the horizontal or at least that's the impression I got. Wilbur Hubbard You are confused then. Propeller pitch is the distance a prop would screw itself forward in one revolution if there was no slip. I noticed from your earlier post that your 'bluewater yacht' has an outboard on the stern. ROFL |
#38
![]()
posted to alt.sailing.asa
|
|||
|
|||
![]() "Marty" wrote in message ... Wilbur Hubbard wrote: "Marty" wrote in message ... Wilbur Hubbard wrote: "Marty" wrote in message ... Charles Momsen wrote: "Joe" wrote in message ... On Dec 11, 12:00 pm, "Wilbur Hubbard" wrote: "Charles Momsen" wrote in message ... This graph: http://www.windows.ucar.edu/tour/lin....html&edu=high Shows the density of water as a function of depth. Water density changes from 1.025 gm/cm^3 to 1.026 gm/cm^3 in 250 feet. That's a change of 0.1% in 250 ft. Since that portion of the curve is linear, one can estimate that water density would change .0004% over the diameter (tip to tip) of a 12 inch propeller. So is a .0004% change in water density (in the vertical plane no less) going to walk a boat sideways? Don't think so. Think, Momsen, think! There are very large forces at work when a propeller is turning at speed. You are stuck on static in your thinking. Picture it this way. Let's say you were riding a bicycle at 1mph and you had a ten mile per hour headwind. You would experience an 11mph head wind. Now, if you aren't a girly-man you should be able to sprint up to 35mph. You would then experience a 45mph headwind. Suddenly your inconsequential wind has great consequence. It's the same way with a propeller and the lift vs.drag coefficient. Even a very small density difference results in a significant drag difference between the top half of the prop and the bottom half of the prop. But there is another thing that has a greater effect than density causing density to be only part of the equation. Water density does not vary greatly due to the fact that it doesn't compress easily. What does change significantly with depth is water pressure (divers say 1 atmosphere for every 15 feet?) The more pressure = the more drag for the propeller. I hope this helps. Wilbur Hubbard Let me use examples you may understand Neal. Ever mix paint in a 5 gallon bucket with a paint mixing propellor on a drill? Why is the propellor in the paint pulled off center? A dairy has huge tanks to store milk. They keep the creme mixed in the milk with propellors on long shafts. They hang straight down , he shaft is vertical. When you turn them on the long shafts bend some in the direction of wheel walk. Are you saying that it is pressure difference when the prop is horizional causing the walk? When a propellor flys off an airplane they never go straight, they spin off in the direction of walk. Think path of least resistance to the face of the fluke Hope this helps. Joe ************************************************** ************************************ ************************************************** ************************************ Joe, Thanks to your input, that of Wilbur and others I believe I have come up with the most plausible explanation for propeller walk. This explanation may even impress Blondie! The cause of the prop walk is due to 2 effects, namely the Magnus Effect and the Coanda Effect. They can be found he http://lpmpjogja.diknas.go.id/kc/a/air/airplane.htm The spinning prop creates a vortex of water that is moving relative to water surrounding it, especially if the prop is angled down relative to the water's surface. A right hand prop on a forward moving boat would create a downward angling vortex that had higher relative velocity to the surrounding moving water on the starboard side and lower on the port. Viewing the vortex as a rotating cylinder moving through a fluid, the lift would be generated to port, as is observed. The Coanda Effect would explain the draggging and leakage of water laterally by the prop. I believe these explanations are the simplest and consistent with all observed effects, including paint stirrers in Joe's buckets. I searched and could find no explanation of prop walk using the Magnus or Coanda Effect. Mostly what I found was the same false pablam of water density and other voodoo science mindlessly regurgitated by babbling non-thinking parrots. Read Chapman, he explains it in exactly the same terms, (vortexes) but leaves out calling it either Magnus or Coanda. It's a nice simple explanation with a little drawing explaining why the port side blade on a right hand prop has a lower angle of attack than the right side. If you imagine perhaps the worst case: A prop has a pitch angle of 10 degrees (I know this doesn't happen with a real prop), it's on a shaft inclined by 10 degrees. In this case the port side blade vertical at it ascends or descends and generates no thrust, forward or aft. All the thrust comes from the starboard side blade angled at 20 degrees, you can clearly see there is an unbalance here. Now put it reverse and the prop throws a rising vortex of water at the starboard side of the hull, kicking it to port, while at the same time pulling the prop shaft sternwards from the starboard side only, tending to skew the boat to port. Put both together and you've got port prop walk. Cheers Martin Wrong! Pitch angle doesn't matter. My outboard motor on the back of my bluewater yacht can be put in reverse on a calm day at about 1/8 throttle while I'm tied to my mooring. My yacht will turn slow circles caused by prop walk. The propeller is totally horizontal. Wrong yourself. Pitch angle contributes. In your case, the vortex is propelled upward on the starboard side, impinging the starboard side of your boat, on the port side the vortex tends be more downward. Pitch angle just adds to the effect. Cheers Martin So you're talking about pitch of the prop as inches per revolution and not pitch as angle of the prop shaft? That's going off on a tangent as those talking about pitch angle in this thread are talking about the angle of the prop shaft from the horizontal or at least that's the impression I got. I do hope you're not being deliberately obtuse. I specifically mentioned the pitch of the propeller blades and the angle of the shaft in the same post so as to make it clear. Anyway if you like, change my 'Pitch Angle" and yours, to 'Shaft Angle', and all is well. If the shaft is horizontal, blade pitch still causes the vortex to rise on the starboard side, inclining the shaft just adds to the effect Cheers Martin I see the logic in your thinking. So, in my previous example, what if were to take the motor off the transom and attach it to the end of a hundred foot long pole that was firmly affixed to the stern of the yacht and did the same thing with the motor in reverse. I bet the boat would still turn lazy circles even though no water stream was hitting the hull. Wilbur Hubbard |
#39
![]()
posted to alt.sailing.asa
|
|||
|
|||
![]()
Edgar wrote:
"Wilbur Hubbard" wrote in message anews.com... So you're talking about pitch of the prop as inches per revolution and not pitch as angle of the prop shaft? That's going off on a tangent as those talking about pitch angle in this thread are talking about the angle of the prop shaft from the horizontal or at least that's the impression I got. Wilbur Hubbard You are confused then. Propeller pitch is the distance a prop would screw itself forward in one revolution if there was no slip. I noticed from your earlier post that your 'bluewater yacht' has an outboard on the stern. ROFL I thought it odd also Edgar. Every mariner worth his salt knows that propeller pitch refers to the distance the prop would travel through the water under ideal conditions, usually expressed in inches per revolution, the use of degrees is only for academic purposes as the angle of the blade is not uniform from hub to tip in normal applications. Shaft angle should be rather self explanatory. Cheers Martin |
#40
![]()
posted to alt.sailing.asa
|
|||
|
|||
![]() "Edgar" wrote in message ... "Wilbur Hubbard" wrote in message anews.com... So you're talking about pitch of the prop as inches per revolution and not pitch as angle of the prop shaft? That's going off on a tangent as those talking about pitch angle in this thread are talking about the angle of the prop shaft from the horizontal or at least that's the impression I got. Wilbur Hubbard You are confused then. Propeller pitch is the distance a prop would screw itself forward in one revolution if there was no slip. I noticed from your earlier post that your 'bluewater yacht' has an outboard on the stern. ROFL Sails, my boy, sails. Ain't no motor sailer in the world that can cross the Pacific under power. A motor needs only be used to get into or out of port when there is no wind. The rest of the time it can be removed from the transom and stowed safely away below. Wilbur Hubbard |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
What size propeller? | Cruising | |||
FS: Propeller in NY | Marketplace | |||
Strainer like propeller | ASA | |||
FS: Austral Propeller in NY-NEW! | Marketplace | |||
FS: Boat Propeller in NY | Marketplace |